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Abstract—Vehicular edge computing offers a new paradigm
to improve vehicular services and augment the capabilities of
vehicles. In this paper, we study the problem of task scheduling in
vehicular edge computing, where multiple computation-intensive
vehicular applications can be offloaded to road side units and
each application can be further divided into multiple tasks with
task dependency. The tasks can be scheduled to different mobile
edge computing servers on road side units for execution to
minimize the average completion time of multiple applications.
Considering the completion time constraint of each application
and the processing dependency of multiple tasks belonging to
the same application, we formulate the multiple tasks scheduling
problem as an optimization problem that is NP-hard. To solve
the optimization problem, we develop an efficient task scheduling
algorithm. The basic idea is to prioritize multiple applications
and prioritize multiple tasks so as to guarantee the completion
time constraints of applications and the processing dependency
requirements of tasks. Numerical results demonstrate that our
proposed algorithm can significantly reduce the average com-
pletion time of multiple applications compared with benchmark
algorithms.

Index Terms—Multiple applications, Task scheduling, Task
dependency, Vehicular edge computing.

I. INTRODUCTION

With the rapid advancement of internet of things and wire-
less communication technology, vehicles have been a signifi-
cant component of mobile devices connecting to the Internet.
Vehicles can run various computation-intensive applications,
such as image-aided navigation, intelligent vehicle control,
traffic management, in-vehicle entertainment and augmented
vehicular reality. These computation-intensive applications not
only require massive computation resources and storage re-
sources to handle complicated data processing and storage op-
erations, but also have stringent delay requirements. However,
resource-constrained vehicles have not been ready to provide
sufficient computation resources and storage resources to meet
the resource requirements of these applications. This poses
a significant challenge for vehicles to ensure their required
quality of service [1], [2], [3], [4], [5].

In order to cope with the explosive computation resources
and storage resources demands of vehicles, mobile cloud
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computing is envisioned as a promising paradigm [6]. Mobile
cloud computing is a system that introduces cloud computing
capability into mobile computing environments. In mobile
cloud computing, vehicles can offload their computation-
intensive applications to conventional resource-rich cloud
servers via wireless networks, greatly extending their com-
putation capabilities [7].

However, for computation-intensive and delay-sensitive ap-
plications, such as augmented vehicular reality, it is insuffi-
cient to offload the computation-intensive applications to con-
ventional cloud servers, because conventional cloud servers are
located far away from vehicles, the remote offloading will lead
to unpredictable transmission delay and serious degradation
of quality of service. To address the challenges, Mobile Edge
Computing (MEC) is proposed as a promising solution that can
provide cloud services at the edge of radio access networks.
By providing services closer to vehicles, MEC can decrease
the transmission delay of applications and alleviate massive
computation resources requirements of vehicles greatly [8],
[9], [10].

Furthermore, as an important use case of MEC, vehicular
edge computing (VEC) has emerged as a new computing
paradigm in the field of intelligent transportation system that
has received significant attention in recent years, because it
can extend cloud computation capability to the close proximity
of vehicles. In VEC, to provide high level quality of service
for vehicles, a large number of cloud services are deployed
on Road Side Units (RSUs), as illustrated in Fig. 1, vehicles
can access to RSUs via wireless networks. In this case,
computation-intensive and delay-sensitive applications can be
offloaded to MEC servers on RSUs for execution [11].
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Fig. 1. The architecture of VEC.

There has been some research works on VEC. Zhang et
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al. [12] proposed a task offloading scheme based on Stack-
elberg game theory to maximize the utilities of both vehicles
and MEC servers. Zhang et al. [13] introduced an efficient
predictive combination-mode offloading mechanism to reduce
offloading cost. Dai et al. [14] developed a joint optimal VEC
server selection and offloading algorithm to maximize system
utility. Zhou et al. [15] proposed an energy-efficient resource
allocation algorithm based on alternating direction method of
multipliers. Zhu et al. [16] developed a dynamic task allocation
solution to ensure the quality of service. The prior studies
assume that applications consisting of independent tasks are
offloaded to RSUs for execution. However, task execution
order depends on task dependency and the effect of task
dependency on execution time of applications has not been
considered in the previous research works. For an augmented
vehicular reality system with the following major compo-
nents: object tracking, model mapping, object recognition,
perspective transformation and merging processing, there are
some task dependencies among the components, e.g., only
after one vehicle is tracked, the surrounding environmental
model of the vehicle can be built and only after one vehicle
is recognized, the process of perspective transformation and
merging processing can be executed. To ensure that multiple
vehicular applications can be completed in time, it is necessary
to take task dependency into account for task scheduling
policies design.

To overcome the above drawbacks, in this paper, we con-
sider the task dependency and the completion time constraints
when scheduling tasks into multiple MEC servers. The goal
of the work is to identify task scheduling decision that min-
imizes the average completion time of multiple applications,
subject to their respective completion time constraints. We first
present a VEC architecture. Then, we specify the completion
time constraint of each application and the task dependency
requirements of tasks. Finally, we propose an efficient task
scheduling algorithm to minimize the average completion time
of multiple applications.

The main contributions of this work are as follows:
• We propose a VEC architecture which consists of multi-

ple vehicles, multiple RSUs and multiple MEC servers.
Each vehicle has a computation-intensive and delay-
sensitive application. Each RSU is equipped with mul-
tiple MEC servers. Multiple vehicles can offload their
computation-intensive and delay-sensitive applications to
MEC servers on RSUs for execution where applications
are independent of each other but tasks (belonging to the
same application) have processing dependence.

• We formalize the task scheduling decision problem as
an optimization problem which is NP-hard, and then
propose an efficient Multiple Applications Multiple Tasks
Scheduling (MAMTS) algorithm to solve the optimiza-
tion problem. Furthermore, we prioritize multiple applica-
tions to meet their respective completion time constraints,
and prioritize multiple tasks for satisfying their process-
ing dependency requirements.

• We evaluate the proposed task scheduling algorithm with
extensive simulations. The simulation results show that
our proposed algorithm can significantly reduce the av-

erage completion time of multiple applications compared
with benchmark algorithms.

The rest of the paper is organized as follows. We first briefly
discuss related work in Section II. We then depict the system
model in details in Section III. We next formulate the task
scheduling decision problem as an optimization problem in
Section IV. We further propose an efficient task scheduling
algorithm to solve the optimization problem in Section V. We
present the simulation results to evaluate the performance of
the proposed algorithm in Section VI. Finally, we conclude
the paper in Section VII.

II. RELATED WORK

There are some research works on offloading computation-
intensive tasks to nearby MEC servers. Guo et al. [17] con-
sidered the requirements of heterogeneous quality of service
and principles of resource allocation. A hierarchical genetic
algorithm and particle swarm optimization-based computa-
tion algorithm was proposed. You et al. [18] developed an
energy-efficient resource-management policy, so as to mini-
mize total mobile-energy consumption for the asynchronous
MEC system. Ji et al. [19] studied the problem of energy-
effective computation offloading and resource allocation, so
as to maximize energy efficiency under the minimal quality
of service constraint. Xu et al. [20] considered both dynamic
service caching and task offloading. An efficient online and
decentralized computation offloading algorithm was proposed.
However, the above research works focus on how to make
computation offloading decisions, none of them considers how
to schedule applications on multiple MEC servers to improve
the computation offloading performance.

The problem of task scheduling based on task dependency
in distributed system was investigated in some recent works.
Yao et al. [21] proposed a novel scheduling policy for Hadoop
YARN systems, so as to improve the resource utilization and
reduce the makespan of a given set of MapReduce jobs. Wu et
al. [22] adopted genetic algorithm to solve the task scheduling
problem. Topcuoglu et al. [23] developed two new static
scheduling algorithms for heterogeneous systems. Geng et al.
[24] focused on energy-efficient computation offloading for
multi-core mobile devices. A heuristic algorithm was proposed
to jointly solve computation offloading decisions and task
scheduling problems. Sundar et al. [25] proposed to greedily
schedule tasks to minimize application execution cost in a
cloud computing system. Wang et al. [26] proposed a task
scheduling approach for a mobile cloud computing system
based on ant colony optimization algorithm. The research
works assume that the servers have infinite capacity. However,
this assumption is unrealistic, since MEC servers usually have
limited resources. In our work, each RSU is equipped with
multiple MEC servers with limited computation capacity.

Some studies focused on the problem of improving the
performance of task scheduling in VEC. Sun et al. [27]
considered instability of computation resource and heterogene-
ity of computation capability. A cooperative task scheduling
scheme was proposed to improve computation efficiency. Zhu
et al. [28] proposed an event-triggered dynamic task allocation
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framework to meet the constraints on service latency, and
quality loss. Qi et al. [29] designed a knowledge driven service
offloading decision framework for internet of vehicle. The
aforementioned schemes have not considered the influence
of the priorities of different applications on the algorithm
performance.

The aforementioned schemes cannot be directly applied to
our proposed applications offloading scenario. Different from
the aforementioned works, in this paper, we consider that
multiple applications have their respective completion time
constraints, there are task dependency requirements for multi-
ple tasks belonging to the same application, on the other hand,
MEC servers on RSUs have limited computation capacities.
The tasks can be scheduled to different MEC servers with
limited computation capacity for execution, to minimize the
average completion time of multiple applications.

III. SYSTEM MODEL

In this section, we present the system model, i.e., network
model, application model, and computation model in details.

A. Network Model
In this section, we introduce the network model of the

system. Fig. 1 shows the architecture of vehicular edge com-
puting which consists of vehicles, RSUs and MEC servers.
We consider that there are M vehicles arriving at the starting
point of a unidirectional road and there are N RSUs along
the unidirectional road. Each RSU is equipped with R MEC
servers. The set of vehicles is denoted asM = {1, 2, · · · ,M},
the set of RSUs is denoted as N = {1, 2, · · · , N}, the set of
MEC servers on each RSU is denoted as R = {1, 2, · · · , R}.
Based on the coverage range of each RSU, we can divide
the road into corresponding N segments with different length
{L1, L2, · · · , LN}, respectively. For ease of reference, we
show the key notations used in this paper in Table I.

TABLE I. Key Notations

Notation Description
M,M set / number of vehicles
N , N set / number of RSUs
R, R set / number of MEC servers on each RSU
m the vehicle index m ∈M
n the RSU index n ∈ N
r the MEC server index r ∈ R
Tm the mth application
Tm,i the ith task of application Tm

I, I set / number of tasks of application Tm

i the task index i ∈ I
xm,i,r the scheduling decision variable of task Tm,i

RTm,i the ready time of task Tm,i

AFTm,i the actual completion time of task Tm,i

ESTm,i,r the earliest start time of task Tm,i

EFTm,i,r the earliest finish time of task Tm,i

We consider that vehicles are moving at a constant speed v.
The vehicles moving within the nth road segment can access

the nth RSU via wireless channel, n ∈ N represents one RSU.
We assume that each vehicle has a computation-intensive and
delay-sensitive application to be executed within a stringent
completion time constraint. Each vehicle can offload its ap-
plication to one RSU for execution. Each application can be
described in three terms as Tm = {dm, bm, tmax

m },m ∈ M
represents one vehicle, where dm is the size of input data
describing some information of application Tm, bm is the
amount of computation resource required to complete applica-
tion Tm, and tmax

m is the maximum delay allowed to complete
application Tm.

B. Application Model

In this section, we introduce the application model of the
system. We assume that each application can be partitioned
into multiple tasks. The tasks can be mutually dependent, i.e.,
the tasks can not be scheduled simultaneously and some tasks
may need input from other tasks. We refer to a task as the
unit of computation. Each task can be scheduled to any MEC
server for execution. Each application Tm can be modeled as a
directed acyclic graph G =< I, E >, where I is the set of task
nodes and E is the set of edges. Let I = |I| denote the total
number of tasks belonging to application Tm. In the task graph,
node Tm,i represents the ith task belonging to application
Tm, edge (Tm,i, Tm,j) represents the task dependency that
task Tm,j can not be scheduled until task Tm,i has been
completed, i, j ∈ I,. In one given task graph, the task without
any immediate predecessor node is known as entry task, and
the task without any immediate successor node is known as
exit task. Note that tasks belonging to different applications
are independent of each other, however, tasks belonging to the
same application may have task dependency requirements.

Fig. 2 shows an example of task graphs of two applications.
In Fig. 2, task T1,1 and task T2,1 represent the 1th task of
application T1 and application T2, respectively. Task T1,1 and
task T2,1 are entry tasks of application T1 and application
T2, respectively. Task T1,10 and task T2,8 are exit tasks of
application T1 and application T2, respectively. Task T1,2 is
immediate predecessor task of task T1,5 and task T1,6. Task
T1,5 and task T1,6 are immediate successor tasks of task T1,2.
Task T1,5 and task T1,6 are started until task T1,2 has been
completed. Task T2,2 and task T2,3 are immediate predecessor
tasks of task T2,5. Task T2,5 is immediate successor task of
task T2,2 and task T2,3. Task T2,5 is started until task T2,2 and
task T2,3 have been completed.

C. Computation Model

In this section, we introduce the computation model of
the system. To calculate the completion time of one ap-
plication, we need to first model the execution process of
every application. Specifically, the completion time of each
application consists of four parts, i.e., vehicle movement time,
data transmission time, application computing time and result
transmission time. Vehicle movement time is the time taken
for one vehicle from its starting point to the coverage range of
one RSU. Data transmission time is the time that input data of
one application is transmitted from one vehicle to one RSU.
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Fig. 2. An example of task graphs of two applications.

Application computing time is the time that one application is
completed on one RSU. Result transmission time is the time
that the computation result of one application is transmitted
from one RSU to one vehicle. Since the size of computation
result of one application is often much smaller than its input
data size, therefore, the computation result transmission time
can be ignored. When application Tm is offloaded from vehicle
m to RSU n, we denote tprocessm as the total completion time
that application Tm is processed on RSU n. Next, we introduce
the models of vehicle movement time, data transmission time
and application computing time.

1) Movement Time: Due to the high mobility of vehicles,
when vehicle m moves from its starting point to the coverage
area of RSU n, application Tm can be offloaded to RSU n
from vehicle m. We assume that vehicle m has passed n− 1
road segments from its initial location in the vehicle heading
direction. We denote tmov

m as the movement time of vehicle
m, i.e., the time taken for vehicle m from its starting point to
the coverage range of RSU n, thus, vehicle movement time
tmov
m can be given as

tmov
m =

n−1∑
k=1

Lk

v
(1)

2) Transmission Time: We consider that the wireless com-
munication between vehicles and RSUs is based on Orthog-
onal Frequency Division Multiple Access. We denote tsendm

as the transmission time of input data dm of application Tm,
denote pm as the transmission power of vehicle m, denote gnm
as the channel gain between vehicle m and RSU n, denote
snm as the data transmission rate of the link between vehicle
m to RSU n, thus, data transmission rate snm can be given as

snm = Wlog(1 +
pmgnm
N0

) (2)

where W represents the bandwidth of the link between vehicle
m to RSU n, N0 represents the noise power. Thus, data
transmission time tsendm required by vehicle m for uploading
its application Tm with size dm can be given as

tsendm =
dm
snm

(3)

3) Computing Time: We consider that computation resource
of each RSU is limited. Since multiple vehicles may select the
same RSU as their offloading target, thus, we need to allocate
computation resources for multiple applications to meet their
respective completion time constraints.

We assume that each MEC server on RSUs can only
execute one task at a time, therefore, other tasks assigned
to the same MEC server may not be processed immediately,
due to the existing task being processed in the same MEC
server. We denote AFTm,i as the actual time that task Tm,i

is completed on MEC servers, where Tm,i represents the ith
task of application Tm. We can consider this problem based
on the project management theory [30]. Since there may be
task dependency requirements among the tasks belonging to
the same application, all immediate predecessor tasks of task
Tm,i must have been completed before task Tm,i is started.
Next, we definite the ready time of task Tm,i.

The ready time of one task is the earliest time that all its
immediate predecessor tasks have been completed, thus, the
ready time RTm,i of task Tm,i can be given as

RTm,i = max
Tm,h∈pre(Tm,i)

AFTm,h (4)

where pre(Tm,i) represents the set of immediate predecessor
tasks of task Tm,i, Tm,h must have been completed before task
Tm,i is started.

Furthermore, we assume that when MEC server r is idle,r ∈
R represents one MEC server on one RSU, task Tm,i can be
scheduled to MEC server r. If another task has been executing
on MEC server r, task Tm,i must wait in a queue until MEC
server r is available. We denote ATm,i,r as the earliest time
that MEC server r is available for task Tm,i. When one task
has been ready and one MEC server is available for the task,
the task can be started on the MEC server.

The earliest start time of one task is the earliest time that
one task has been started after the task has been ready and
one MEC server is available for the task, thus, the earliest
start time ESTm,i,r of task Tm,i on MEC server r can be
given as

ESTm,i,r = max{RTm,i, ATm,i,r} (5)

We denote ETm,i,r as the time that task Tm,i is executed
on MEC server r, execution time ETm,i,r can be given as

ETm,i,r =
bm,i

fr
(6)

where bm,i represents the amount of computation resource
required to complete task Tm,i, fr represents the computation
capability of MEC server r.

The earliest finish time of one task is the earliest time that
one task has finished its execution on one MEC server, thus,
the earliest finish time EFTm,i,r of task Tm,i on MEC server
r can be given as

EFTm,i,r = ESTm,i,r + ETm,i,r (7)

After task Tm,i is scheduled to MEC server r, earliest finish
time EFTm,i,r is equal to its actual finish time AFTm,i.

After all tasks of application Tm are scheduled to MEC
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servers, finish time of exit task is equal to the actual computing
time of application Tm. We denote Tm,I as the exit task of
application Tm, thus, the computing time tcomp

m of application
Tm on RSU n can be given by

tcomp
m = AFTm,I (8)

According to Eq.(1), (3), and (8), completion time tprocessm

can be written as follows:

tprocessm = tmov
m + tsendm + tcomp

m (9)

IV. PROBLEM FORMULATION

In this section, we formalize the task scheduling decision
problem as an optimization problem. To ensure that all the
tasks can be executed on MEC servers, we first define a
scheduling decision variable xm,i,r as follows:

xm,i,r =

{
1 if task Tm,i can be executed on MEC server r,
0 otherwise,

(10)
where xm,i,r = 0 represents that task Tm,i can not be executed
on MEC server r. Moreover, to ensure that each task is
scheduled to only one MEC server, according to Eq.(10), we
can define such a constraint

∑R
r=1 xm,i,r = 1.

For task scheduling, we define a binary variable yh,i to
specify the task scheduling order as follows:

yh,i =

{
1 if task h is scheduled before task i,
0 otherwise, (11)

where yh,i = 1 represents that task i is not scheduled until
task h has been scheduled.

Based on the above definition variables, the earliest start
time ESTm,i,r of task Tm,i on MEC server r should meet the
following constraint:

ESTm,i,r ≥ xm,i,r · xs,h,r · yh,i · EFTs,h (12)

That is, if task Tm,i is scheduled to MEC server r, all other
tasks that are scheduled to the same MEC server r before task
Tm,i should have been completed.

Besides, the task dependency among the tasks belonging to
the same application should meet the following constraint:

AFTm,i ≥ yh,i ·AFTm,h (13)

That is, if task Tm,h and task Tm,i belong to the same
application Tm and task Tm,h is immediate predecessor task
of task Tm,i, task Tm,i is not completed until task Tm,h has
been completed.

Furthermore, the finish time of exit task of application Tm

should meet the following constraint:

AFTm,I ≤ tmax
m − tmov

m − tsendm (14)

ensures that application Tm can be finished within its comple-
tion time constraint tmax

m .
The objective is to identify the task scheduling decision that

minimizes the average completion time of multiple applica-
tions, subject to their respective completion time constraints.
Thus, the task scheduling decision problem can be formulated

as an optimization problem as follows:

min
1

m
[

M∑
m=1

(tmov
m + tsendm ) +

M∑
m=1

I∑
i=1

R∑
r=1

xm,i,r · EFTm,i,r]

subject to Eq.(10), (11), (12), (13), and (14)
(15)

The problem in Eq.(15) is a mixed-integer nonlinear pro-
gramming problem. It is known from [31] that a mixed-integer
nonlinear programming problem is NP-hard, therefore, the
optimization problem in Eq.(15) is also NP-hard. To solve the
problem with low complexity, we propose an efficient task
scheduling algorithm in next section.

V. PROPOSED ALGORITHM AND ANALYSIS

In this section, we first propose an efficient task scheduling
algorithm, and then analyze its computational complexity.

A. Proposed Algorithm

In this section, we present the details of our proposed
algorithm, which has three phases. First, we construct an
application priority queue for multiple applications without
violating their respective completion time constraints. Second,
we construct a task priority queue for multiple tasks without
violating their respective completion time constraints. Last, we
schedule tasks to multiple MEC servers to reduce the average
completion time of multiple applications.

1) Application Prioritization: To ensure that all applica-
tions are finished within their respective completion time
deadlines, we first construct an application priority queue.
An application priority queue is a queue that keeps multiple
applications in a decreasing order of application priority.
Intuitively, applications with more stringent completion time
deadlines should have higher priority to be scheduled, i.e., one
application with the minimal completion time deadline should
be given the highest priority and reside on the head of an
application priority queue. An application priority queue can
be obtained by increasing order of completion time deadlines
of multiple applications.

2) Task Prioritization: Since there are task dependency
requirements among the tasks belonging to the same appli-
cation, thus, we identify the completion time constraints of all
tasks. This can be achieved by computing latest finish time
of all tasks. The latest finish time of one task is treated as its
individual completion time constraint. Thus, we construct a
task priority queue. A task priority queue is a queue that keeps
the tasks in a decreasing order of task priority. Intuitively, tasks
with more stringent completion time constraints should have
higher priority to be scheduled, i.e., one task with the minimal
completion time constraint should be given the highest priority
and reside on the head of a task priority queue. Next, we give
some variables to obtain a task priority queue.

The latest finish time of one task is the latest time that one
task has finished its execution on MEC servers, thus, the latest
finish time LFTm,i of task Tm,i can be given as

LFTm,i = min
Tm,j∈suc(Tm,i)

(LFTm,j − ETmin
m,j ) (16)
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where suc(Tm,i) is the set of all immediate successor tasks
of task Tm,i, ETmin

m,j is the minimal time that task Tm,j is
executed on MEC servers, i.e., ETmin

m,j = min1≤r≤R ETm,j,r.
The completion time constraint of application Tm is tmax

m ,
thus, the latest finish time of exit task of application Tm

is also tmax
m . For one task, its latest finish time is its tight

deadline. If one task has not been finished before its latest
finish time, it may not meet the completion time constraint of
the application.

The latest start time of one task is the latest time that one
task has been started on MEC servers, thus, the latest start
time LSTm,i of task Tm,i can be derived from its latest finish
time LFTm,i as follows

LSTm,i = LFTm,i − ETmin
m,i (17)

The latest start time of one task can be used to measure
its emergency. One task with more stringent latest start time
should be started earlier. If one task is exactly finished at its
latest finish time, other tasks may not be finished within their
respective deadlines. Thus, we denote SLFT as the slack
latest finish time that one task has slack time to complete
its execution on MEC servers. SLFTm,i of task Tm,i can be
given as

SLFTm,i = min
Tm,j∈suc(Tm,i)

(LFTm,j − ETmax
m,j ) (18)

where ETmax
m,j is the maximum time that task Tm,j is executed

on MEC servers, i.e., ETmax
m,j = max1≤r≤R ETm,j,r. Similar-

ly, the slack latest finish time of exit task of application Tm

is also tmax
m .

For one task, if it is finished within its latest finish time,
this may cause the application to fail to be finished within the
application deadline. Because the slack latest finish time of
one task is usually earlier than its latest finish time, if all the
immediate predecessor tasks of one task have been finished
before their respective slack latest finish time, the task can
always be finished before its latest finish time. Furthermore,
this can ensure that the application can be finished within its
delay constraint. Therefore, for one task, we can compute its
latest start time by replacing its latest finish time with its slack
latest finish time.

One more urgent task should have higher priority to be
scheduled. Therefore, for one task, its latest start time can be
used to measure its priority, i.e., one task with more stringent
latest start time should have higher priority to be scheduled.
Thus, we can obtain a task priority queue by sorting latest
start time of tasks.

3) Task Scheduling: The basic idea is to choose one task
that has the highest task priority and schedule it to one MEC
server that can minimize its completion time. The input of task
scheduling algorithm is multiple applications. We first create
an application priority queue by increasing order of multiple
applications. Moreover, we create a task priority queue by
increasing order of multiple tasks.

When multiple tasks are scheduled, if one task with lower
task priority belonging to one application has been ready
earlier than one task with higher task priority belonging to
other applications, we should first schedule the task that has

been ready rather than strictly following the task priority order.
Thus, we can have a task waiting list to save the tasks that
have been not ready but have higher task priority than current
task.

The detailed steps of task scheduling are as follows:
• Choose task Tm,i with highest task priority from the task

priority queue obtained by task priority sorting operation.
Compute the ready time RTm,i of task Tm,i according
to Eq.(4). If task Tm,i has been ready, we compute its
execution time ETm,i on all MEC servers according to
Eq.(6). If task Tm,i has been not ready, we save it in the
task waiting list.

• Schedule task Tm,i to obtain its minimal execution time
on MEC servers, however, because any task in the task
waiting list may not be finished within its deadline,
we may obtain a non feasible task scheduling scheme.
When task Tm,i is scheduled to multiple MEC servers,
we compute the execution time of other tasks in the
task waiting list on MEC servers according to Eq.(7)
supposing task Tm,i is scheduled. For task Tm,j , if it can
not be completed within its SLFTm,j , task Tm,j should
be scheduled to MEC servers before task Tm,i.

• For task Tm,i, if it has been scheduled to MEC servers,
we will update the task scheduling sequence and delete
it from the task priority queue, and return to the first step
until all tasks have been scheduled to MEC servers.

The detailed description of the proposed algorithm
is given in Algorithm 1. As an example, we perform
the task scheduling algorithm on the task graphs given
in Fig. 2. In this example, we set the completion time
deadlines of two applications tmax

1 = 1, tmax
2 = 2,

respectively. Based on respective completion time deadlines
of the two applications, we can construct an application
priority queue (T1, T2). Based on the task dependency of
multiple tasks, we can construct an initial task priority queue
(T1,1, T1,2, T1,3, T1,4, T1,5, T1,6, T1,7, T1,8, T1,9, T1,10, T2,1, T2,2,
T2,3, T2,4, T2,5, T2,6, T2,7, T2,8). Based on the tasks’
LST , we can construct a new task priority queue
(T1,1, T2,1, T1,2, T1,4, T1,3, T2,2, T2,3, T2,4, T1,7, T2,6, T1,6, T1,5,
T2,5, T1,9, T1,8, T2,7, T1,10, T2,8). For example, after task T1,2

has been scheduled to one MEC server, task T1,5 and task
T1,6 should wait until T1,2 has been finished. Assuming that
task T1,7 has been ready, task T1,7 should be scheduled to
one MEC server before task T1,5 and task T1,6. Since the
objective is to minimize the average completion time of
two applications, when any MEC server is available, tasks
should be scheduled to idle MEC servers to meet respective
completion time deadlines of two applications.

B. Complexity Analysis

In this section, we analyze the computational complexity
of our proposed algorithm. The computational complexity of
Algorithm 1 mainly contains three parts, i.e., generating an
application priority queue stage, generating a task priority
queue stage and task scheduling stage. The complexity of
generating an application priority queue stage is determined
by line 2, it has the complexity of O(M) to compute the
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Algorithm 1 MAMTS Algorithm

Input: Vehicular applications, task graphs
Output: Task scheduling sequence TSS

1: Initialize task priority queue TPQ = Φ, TSS = Φ,
waiting list list = Φ;

2: Sort applications in increasing order by completion time
deadlines of applications;

3: Sort tasks in increasing order by latest start time of tasks;
4: function MainSchedule
5: while TPQ 6= Φ do
6: Choose task Tm,i = TPQ.head;
7: Calculate RTm,i from Eq.(4);
8: if task Tm,i has been not ready then
9: Save task Tm,i in list;

10: else
11: ScheduleTask Tm,i;
12: end if
13: Update Tm,i;
14: Update TPQ;
15: end while
16: end function
17: function ScheduleTask Tm,i

18: GetTaskF inishT ime Tm,i;
19: for all r do
20: Find the index of MEC server r such that

min1≤r≤R ETm,i,r;
21: Set the index of MEC server Serverr;
22: end for
23: if list = Φ then
24: ScheduleTaskToServer(Tm,i, Serverr);
25: end if
26: for task Tn,j in list do
27: GetTaskF inishT ime Tn,j ;
28: for all r do
29: if AFTn,j,r > SLFTn,j then
30: ScheduleTask Tn,j ;
31: end if
32: end for
33: end for
34: ScheduleTaskToServer(Tm,i, Serverr);
35: end function
36: function GetTaskF inishT ime Tm,i

37: for all r do
38: if MEC server Serverr is idle then
39: Calculate EFTm,i,r from Eq.(7);
40: end if
41: end for
42: return EFTm,i,r;
43: end function
44: function ScheduleTaskToServer(Tm,i, Serverr)
45: Schedule task Tm,i to MEC server Serverr;
46: Update TSS;
47: Delete Tm,i from TPQ;
48: end function

ranking metrics of all applications, O(M logM) to sort the
applications. The complexity of generating a task priority
queue stage is determined by line 3, it has the complexity
of O(Z) to sort the tasks, O(Z logZ) to sort the tasks, where
O(Z), Z = MI represents the total number of tasks belonging
to M applications. In the task scheduling stage, the dominating
operation part is the while loop in lines 5-15. The complexity
of the while loop is mainly determined by line 5 and line 11.
The complexity of line 5 is O(Z logZ), the complexity of
line 11 is determined by lines 18-34, the complexity of lines
18-34 is O(ZR). Thus, the complexity of the task scheduling
stage is O(Z2R). Therefore, the complexity of Algorithm 1
is O(M logM) + O(Z logZ) + O(Z2R) = O(Z2R).

VI. PERFORMANCE EVALUATIONS

In this section, we provide simulation results to verify the
performance of our proposed algorithm. In the following, we
first introduce the simulation setup, and then present the com-
parison on average completion time of multiple applications
with benchmark algorithms, further present the comparison on
completion rate of applications with benchmark algorithms,
finally, we analyze the impact of various parameters on the
performance of the proposed algorithm.

A. Simulation Setup

In this section, based on the existing research works [14],
[32], [33], we set various parameters for the simulations. We
consider a scenario that 5 RSUs are uniformly located along
a 100-meter unidirectional road. Each RSU is equipped with
5 MEC servers. Assume that there are 20 arriving vehicles
on the unidirectional road, and the vehicles are running at a
constant speed 120 km/hr. The input data sizes of applications
are randomly drawn from the interval [100, 300] KB. The
completion time deadlines of applications are randomly drawn
from the interval [8, 10] seconds. For multiple applications,
task graphs are randomly generated. The transmission power
of each vehicle is 100 mW. The channel bandwidth between
vehicles and RSUs is 5 MHz. The channel gain between
vehicles and RSUs is 20−4. The noise power of the system
is 10−10 mW. The computation resources of MEC servers
are randomly assigned from the interval [1, 5] GHz. The
computation resource requirements of the tasks are randomly
assigned from the interval [0.1, 0.4] GHz.

To verify the performance of our proposed algorithm, we
conduct simulations based on randomly generated task trees in
terms of directed acyclic graph structure of multiple applica-
tions [34]. Furthermore, we introduce the following benchmark
algorithms.
• Greedy Scheduling (GS): Select tasks from top to bottom

along the acyclic graph structure of multiple applications
and schedule each task to one MEC server where it has
the least execution time.

• Random Scheduling (RS): Select tasks from top to
bottom along the acyclic graph structure of multiple ap-
plications and schedule each task to a randomly selected
MEC server.
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• Ant Colony Scheduling (ACS): Select tasks from top
to bottom along the acyclic graph structure of multiple
applications and schedule the tasks to MEC servers based
on ant colony optimization algorithm [26].

B. Comparison of Average Completion Time

In this simulation, we compare our proposed algorithm with
the aforementioned benchmark algorithms, with respect to the
average completion time of multiple applications under their
deadlines.

Fig. 3 shows the comparison on the average completion time
of multiple applications versus their different deadlines. As
shown in Fig. 3, we can observe that the average completion
time of multiple applications is reduced by 36%, 26% and
2% comparing with GS, RS and ACS, respectively. This is
because our proposed algorithm considers the priorities of
both multiple applications and multiple tasks, therefore, com-
putation resources can be fully utilized, however, benchmark
algorithms have not considered the impact of priorities of both
applications and tasks on completion time of applications and
can not make the best of computation resources.
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Fig. 3. Comparison of the average completion time under
different application deadlines. The average completion time
represents the average completion time of multiple applica-
tions, application deadline represents the average deadline of
multiple applications. With our proposed algorithm, the aver-
age completion time of multiple applications is significantly
reduced comparing with benchmark algorithms.

C. Comparison of Completion Rate

In this simulation, we compare our proposed algorithm with
the benchmark algorithms, with respect to the completion rate,
the percentage of schedules ensuring that all applications are
completed under their deadlines.

Fig. 4 shows the comparison on the completion rate of mul-
tiple applications versus their different deadlines. As shown
in Fig. 4, we can observe that with our proposed algorithm,
the completion rate of multiple applications is higher than
benchmark algorithms, the completion rate reaches 100%. This
is because our proposed algorithm considers the priorities of
both multiple applications and multiple tasks, therefore, high
priority tasks are prioritized, it is easier to find a schedule

to meet all application deadlines, however, benchmark algo-
rithms have not considered the impact of priorities of both
applications and tasks on completion time of applications.
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Fig. 4. Comparison of completion rate under different applica-
tion deadlines. The completion rate represents the percentage
of schedules that all applications are completed under their
deadlines, application deadline represents the average deadline
of multiple applications. With our proposed algorithm, the
completion rate is much higher than benchmark algorithms.

D. Studies on the Parameters

In this section, we study the impact of various parameters
on the performance of our proposed algorithm, i.e., the number
of applications, the number of MEC servers on each RSU and
computation capabilities of MEC servers.

1) Impact of the Number of Applications: Fig. 5(a) shows
the impact of the number of applications M on the aver-
age completion time of multiple applications. To show its
impact clearly, we vary the the number of applications M
from 5 to 30 with a step value of 5. From Fig. 5(a), we
can observe that the average completion time of multiple
applications slowly increases as the number of applications
M increases using our proposed algorithm. This is due to the
fact that multiple applications compete for limited computation
resources to meet their respective completion time constraints.
This observation indicates that the average completion time of
multiple applications is substantially influenced by the number
of applications M under limited computation resources. The
average completion time of multiple applications changes
dramatically as the number of applications increases using
benchmark algorithms.

2) Impact of the Number of MEC Servers: Fig. 5(b) shows
the impact of the number of MEC servers R on the average
completion time of multiple applications. To show its impact,
we vary the the number of MEC servers R from 3 to 8
with a step value of 1. From Fig. 5(b), we can see that the
average completion time of multiple applications significantly
decreases with the increasing of the number of MEC servers R
using our proposed algorithm. From Fig. 5(b), we can observe
that when the number of MEC servers R increases from 3
to 5, the average completion time of multiple applications is
significantly reduced and when the number of MEC servers R
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(a) Impact of the number of applications M
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(b) Impact of the number of servers R
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Fig. 5. Impact of the parameters. (a)With our proposed algorithm, the average completion time of multiple applications slowly
increases with the number of applications M . (b)With our proposed algorithm, the average completion time of multiple
applications significantly decreases with the increase of the number of MEC servers R on each RSU. (c)With our proposed
algorithm, the average completion time of multiple applications significantly decreases with the increase of computation
capabilities of MEC servers f on each RSU.

increases from 5 to 8, the average completion time of multiple
applications slowly decreases, that is because when the number
of MEC servers R is 5, computation resources are sufficient
to process the multiple applications. The average completion
time of multiple applications changes sharply as the number
of MEC servers increases using benchmark algorithms.

3) Impact of Computation Capability of MEC Servers:
Fig. 5(c) shows the impact of computation capabilities of
MEC servers f on the average completion time of multiple
applications. We set that computation capabilities of MEC
servers f are randomly assigned from the interval [1, 5] GHz.
It can be observed that the average completion time of mul-
tiple applications significantly decreases when computation
capabilities of MEC servers f increase using our proposed
algorithm, that is because when computation capabilities of
MEC servers f increase, there are more computation resources
to process multiple applications, thus, the average completion
time of multiple applications can be significantly reduced.
The average completion time of multiple applications changes
sharply as computation capabilities of MEC servers increase
using benchmark algorithms.

VII. CONCLUSION AND FUTURE WORK

In this paper, we have studied a task scheduling problem for
a VEC system which consists of multiple vehicles, multiple
RSUs, and multiple MEC servers to reduce the average
completion time of multiple applications. Each application
has its respective completion time constraint. There are task
dependency requirements among multiple tasks belonging to
the same application. We have formulated the task scheduling
decision problem as an optimization problem. To solve the
optimization problem, we propose a MAMTS algorithm. Our
proposed algorithm can sort multiple applications and mul-
tiple tasks to obtain an effective solution. Simulation results
demonstrate that our proposed algorithm, outperforming the
benchmark algorithms, can significantly reduce the average
completion time of multiple applications while satisfying their
respective completion time constraints.

We discuss the limitations of our research work which may
inspire the future research work. For one thing, our research
work does not consider the task communication delay, as

we believe that the task processing result is small and the
task transmission time is short. In reality, there may be data
communication between tasks on different MEC servers. An
optimal solution is to take into account the task communi-
cation delay. For another, our proposed algorithm lacks the
verification of a large number of historical data. We plan
to collect a large amount of historical data, and verify the
performance of our proposed algorithm using real historical
data. Solving our research problem based on some artificial
intelligence algorithms is part of future work.
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